Performance Study of Matrix Operations on Homogeneous and Heterogeneous Reconfigurable Computing Systems

Nahid Alam & Dr. Melissa Smith Clemson University

Motivation & Goals

Motivation:

- Matrix operations prevalent in many scientific applications
 - Image and signal processing
 - Linear Solvers and LU Decomposition
- Efficiency needed to support faster computations
- Goals:
 - Use FPGAs to exploit the parallelism of Matrix operations for higher throughput
 - Study the performance in single and multi-FPGA environment
 - Long term goals: Portability
 - Across multiple homogeneous platforms
 - Within a heterogeneous platform
 - Validate heterogeneous performance model

Platform & Tools

- Intel Xeon CPU 5130@ 2 GHz
 + 2 Nallatech H101-PCIXM FPGA accelerator cards
 - One V4LX100
 - 4 Bank DDR2 SSRAM (4 MBytes each)
 - I Bank DDR2 SDRAM (512 Mbytes)
 - 4 Channel Serial Communications
 - Supports floating-point single and double precision, IEEE754 norm
- DIMETalk System Design tool (DIME-C)
 - Advantages over HDL
 - Some auto parallelization
 - Makes programming less HDL intensive
 - Disadvantages
 - Less control than HDL
 - Lacks support for multidimensional array

Algorithms of Study

- Sparse Matrix Vector multiplication (SpMV)
 - Compress Row Storage (CRS) for Sparse Matrix
 - Sparse Matrix formulation outside the FPGA
 - Runtime: worst case O (m²); m=actual # values in Sparse Matrix
- Conventional (dense) Matrix multiplication (CMM)
 - Runtime: worst case O(n³)
- Block Matrix multiplication (BMM): Strassen approach
 - Concept is similar but exact approach was not followed due to the incapability of using recursion in DIME-C

Designing the system - Snapshot of 2 designs:

- Pink box DIME-C module for computation inside the FPGA
- Block RAMs hold different formats of CRS data structure or different blocks in case of BMM; results also kept here
- Data routed to different components through the routers for computation

Performance Study of Matrix Operations on Homogeneous and Heterogeneous Reconfigurable Computing Systems

Results: Performance (SpMV)

SpMV performance vs size graph

Results: Performance (BMM)

BMM performance comparison Processor vs FPGA

7 Performance Study of Matrix Operations on Homogeneous and Heterogeneous Reconfigurable Computing Systems

Results: Single Node Resource Utilization

Algorithms	RAMB16s	Slices	DSPs
SpMV	18%	14%	4%
СММ	15%	10%	0%
BMM	47%	20%	0%

Bottleneck

- Target was to study Matrix operation on single and multi-node environment
 - Problem size may be too large to fit in a single node
 - Multi-node studies not complete due to some system issues
- DIME-C multi-dimensional array support
 - Must implement Matrices in a single dimension
 - Complicates implementations with larger sizes

Summary

Future goals

- Work on the current bottlenecks to study the performance over multi-node environment
- Algorithmic improvement to exploit higher degree of parallelism

Conclusion

- This study is focused on performance and portability for a heterogeneous multi-node environment
- Current state of study completed on single node
- Multi-node analysis in progress

